本篇文章给大家谈谈煤气发生炉结构图,以及煤气发生炉结构图纸对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
分类: 生活 美食/烹饪
问题描述:
气化炉原理是什么,那位能不能说一下怎样制作?
解析:
已有的反火型煤气发生炉和城市垃圾气化炉,其中反火型煤气发生炉的气化原理:炉在运行时,炉内所需气化剂是从上炉口入炉内,与炉内煤料顺方向向下气化反应,制气工艺简便,操作安全卫生,但由于进人炉内的煤料是先经炉内高温氧化处理后,再被还原成煤气的炉内净化和气化同时进行,其环境效益较为理想。其存在的缺点:反人型煤气发生炉的排渣系统由于受转动齿轮水封圈强度的限制而无法向大直径炉型方面发展,对在使用型煤(碳化煤球)时炉座水封中的沉淀物和其它固体物质容易阻塞排渲绞龙。而城市垃圾气化炉由于排灌系统的排渣口是设置在炉中心部位,在排灰渣时会影响炉内灰渣下降的均匀性,也影响炉内产出可燃气体的质量,又由于抽吸煤气口设置在炉内周边,当用多根小管径的管口抽吸炉内煤气时,有灰渣阻塞的现象。
本技术的目的在于针对上述存在的缺陷,提供一种由炉下部中心部位设置一根转动轴来带动炉棚上面的排灰刀和炉座下部的刮灰板所组成新的排渣系统的再生能源气化炉,它可用工业和农业生产中的废弃物及城市生活垃圾制成气化燃料.来制取可供城市居民烧用洁净的城市煤气。
本技术的技术解决方案:有炉体支撑柱18;在炉顶2上设有上炉口1,炉顶2下方是上炉堂3,上炉堂3内有氧化层4,上炉堂3H侧是炉内耐火内衬5,炉内耐火内村5的外围设护体夹套6,在上炉堂3的底部设炉内灰渣圈7,在炉内灰渣圈7的下方设平面炉栅12、炉栅托撑8,炉座17连接炉座炉腔9、炉座清灰孔10,在炉下中心位置设置转动轴14,转动轴14的上端连接排灰刀13,下端连接刮弊汪灰板16,炉座17内设排灰管11,炉体夹套6的下部设抽吸炉内再生燃气管口15。
它的气化方法:(1)将工业或农业生产中的废弃物和城市生活垃圾分选;(2)除去其中不可燃的无机物;(3)将各种有机可燃物经机械加工成气化燃料;(4)气化燃料加人炉内,经1200度以上高温氧化处理后生成洁净的高温二氧化碳再被继续吸人下面的还原层中,被还原成一氧化碳(C0)和氢(H2)及甲烷(CH4)等可燃气体。
本技术的优点:
1.由炉下部中心部位设置的转动轴来代替原大齿轮转动水封圈的复杂排灰渣系统,不但简化炉内排渣转动结构,而又能节省大量的制作材料,同时还可使炉型向大直径规格方面发展。
2.将工业和租陆仔农业生产中的废弃物和城市生活垃圾转化成洁净的城市煤气,
供居民烧用,节约能源,并保护了环境,它有着无限广阔的市场前景和较高经济效益的推广价值。
附图是本技术的结构示意图:
图1中的1为上炉口、2为炉顶、3为上炉膛、4为氧化层、5为炉内耐火内衬、6为炉体夹套、7为炉内灰渣圈、8为炉栅托撑、9为炉座炉腔、10为炉座清灰孔、11为炉下排灰管、12为平面炉栅、13为排灰刀、14为炉下中心转动轴、15为抽吸炉内再生燃气管口、16为炉下刮灰板、17为炉座、18为炉体支撑柱。
下面进一步描述本技术的技术原理和技术解决方案:
再生能源气化炉是在反火型煤气发生炉的气化原理的基础上的改进。反火型煤气发生炉的气化原理是靠炉外抽吸风机的作用下使炉内产生微负压状态,当炉在运行时,炉内所需气化剂是从炉口吸入炉内自上而下,经干留层、氧化层、还原层、灰渣层与炉内煤料发生剧烈的氧化反应后生成高温二氧化碳,而后再被还原成可燃气体。然而,本技术是将工业和农业生产中的废弃物及城市生活垃圾用机械加工成气化燃料,而后进人炉内气化反应。炉内所需气化剂(空气、蒸气、氧气、富氧)是从上炉口或炉上部进气管吸人炉内上部炉腔与炉内在气化燃料干馏时所释放出来的各种有害可燃物质混合后同时被吸入下面的氧化层中,经炉内1200度以悉坦上高温的氧化处理后,生成洁净的高温二氧化碳继续被吸人下面的还原层中被还原成再生燃气。
再生能源气化炉的具体结构是:包括用各种可燃废弃物和生活垃圾制成气化燃料的加人系统,炉体和排灰渣及抽吸炉内煤气系统(或鼓风系统),气化剂的输入管道和产生再生燃气后的输出管道系统。炉体内壁有耐火内衬,气化剂输入管道开口于气化炉上部或顶部,抽吸炉内煤气系统连接于炉内煤气输出管道后,通过抽吸煤气系统使炉内产生微负压,将气化剂吸人炉内自上而下的气化反应,并将炉内气化产生的再生燃气从炉体下部输出,抽气系统和向炉内鼓风系统可同时使用,排灰渣系统与设置在炉中心转动轴相连,由上部排灰刀和下部刮灰板组成排灰(渣)系统,排灰(渣)管设置在炉座下部,由转动轴带动上部的排灰刀和下部的刮灰板将炉内灰渣排人排灰(渣)管内排出炉外。
实施例1:
选炉的直径2.4米,高7.2米;先将工业和农业生产中的废弃物及生活垃圾分选,除去其中不可燃的无机物,如废金属(铜、铁等其它金属)和碎玻璃、碎砖石块等杂物后,再将其可燃部分粉碎,并加入占其总重量30%的煤粉,而后用机械挤压成气化燃料加人反火型再生燃气发生炉内,经炉内1200度以上高温氧化反应后生成高温二氧化碳,再被继续吸入下面的还原层中被还原成一氧化碳(CO)和氢(H2)及甲烷等可燃气体,每小时耗用废弃物和垃圾制成的气化燃料500Kg,可产生再生燃气1000m3,再生燃气热值为5兆焦/m3,按用户需要可外增热到需用燃气热值的标准。也可选用不同性质的气化剂氧或富氧来制取不同热值的再生燃气。
实施例2:
选炉直径3米,高9米,先将工业和农业生产中的废弃物及城市生活垃圾分选,除去其中不可燃的无机物,如废金属(铜、铁等其它金属和碎玻璃,碎砖石块等杂物,再将其中可燃料部分粉碎,并加人占其总重量40%的煤粉,而后用机械挤压成气化燃料加人反人型再生燃气发生炉内,经炉内1200℃以上高温氧化反应后生成高温二氧化碳,再被继续吸人下面的还原层中,被还原一氧化碳(C0)和氢(H2)及甲烷(CH4)等可燃气体,每小时耗用废弃物和垃圾制成的气化燃料1000Kg,可产再生燃气2000m3,再生燃气热值为6兆焦/M3,按用户需要可外增热到需用燃气热值的标准。也可选用不同性质的气化剂(氧或富氧)来制取不同热值的再生燃气。
一、单段式煤气发生炉工艺说明
1、炉体结构:全水套结构,自产蒸汽压力为 294KPa ,可直接通入煤气炉做气化剂使用。
2、加煤机构:采用机械加煤结歼念构,操作简单,维修方便,气密性好。
3、清灰机构:采用液压传动装置湿式单侧除灰。该炉加料、除渣、布风均匀,操作简便、生产稳定、调节方便、运行可靠。
4、常压固定床煤气发生炉,一般以块状无烟煤或烟煤和焦炭等为原料,用蒸汽或蒸汽与空气的混合气体作气化剂,生产以一氧化碳和氢气为主要可燃成分的气化煤气。
煤气炉内燃料层的分区
1-干燥层 2-干馏层 3- 还原层 4- 氧化层 5- 灰渣层
图2-1 煤气发生炉燃料层分区示意图
固体燃料的气化反应,按煤气炉内生产过程进行的特性分为五层,如图2-1所示:干燥层——在燃料层顶部,燃料与冷的煤接触,燃料中的水分得以蒸发;干馏层——在干燥层下面,由于温度条件与干馏炉相似,燃料发生冷分解,放出挥发分及其它干馏产物变成焦炭,焦炭由干馏层转入气化层进行冷化学反应;气化层——煤气炉内气化过程的主要区域,轿改凳燃料中的炭和气化剂在此区域发生激烈的化学反应,鉴于反应条件的不同,气化层还可以分为氧化层和还原层。
(1)氧化层:碳被气化剂中的氧氧化成二氧化碳和一氧化碳,并放出大量的冷量。煤气的冷化学反应所需的冷量靠此来维持。氧化层温度一般维持在1100~1250℃,这决定于原料煤灰熔点的高低。
(2)还原层:还原层是生成主要可燃气体的区域,二氧化碳与灼冷碳起作用,进行吸冷化学反应,生产可燃的一氧化碳;水蒸气与灼冷碳进行吸冷化学反应,生成可燃的一氧化碳和氢气,同时吸收大量的冷。
(3)灰渣层—气化后炉渣所形成的灰层,它能预冷和均匀分布自炉底进入的气化剂,并起着保护炉条和灰盘的作用。 燃料层里不同区层的高度,随燃料的种类、性质的差别和采用的气化剂、气化条件不同而异。而且,各区层之间没有明显的分界,往往是互相交错的。
二、固体燃料气化反应的基本原理
固定床煤气发生炉制造燃气,首先使得空气通过燃料层,碳与氧发生放冷反应以提高温度。随后使蒸汽和空气混合通过燃料层,碳与蒸汽和氧气发生吸冷和放冷的混合反应以生成发生炉煤气。
从造气阶段的化学反应原理,希望形成有利于蒸汽分解和二氧化碳还原反应的条件,所以可以认为:提高气化层的厚度和温度是有利的,适当地降闭旅低蒸汽的流速也是很有利的。在碳与蒸汽的化学反应中,增加气化层厚度、降低气流速度等措施,可使得反应速度加快,又能使得一氧化碳的含量增加,提高蒸汽分解率。
下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧
一、前言
众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。
近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。
二、煤气化分相燃烧技术
烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。
一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。
气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。
煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。
煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表槐瞎示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。
原煤首先在气化室缺氧条件下燃烧和气化热解皮拆,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层燃明枣和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。
原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。
表一:气化室内各层的作用及主要化学反应
层区名 作用及工作过程 主要化学反应
灰层 分配气化剂,借灰渣显热预热气化剂
氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热
2C+O2=2CO 放热
还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热
H2O+C=CO+H2 放热
CO+H2O=CO2+H2 吸热
干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。
干燥层 使煤料进行干燥
在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。
原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。
三、煤气化分相燃烧锅炉的结构特点及应用
锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。
煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图)
气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。
在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。
燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。
对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。
设计煤气化分相燃烧锅炉时,应注意的几点:
1、合理布置煤气出口和煤焦出口的位置和大小;
2、煤焦的温度控制;
3、气化剂进口和进煤口;
4、合理设置二次风和防爆门;
5、气化室与燃烧室的水循环要合理。
由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为0.2t/h~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。
下面以一台DZL2t/h锅炉为例,改造前后对比见表二。
表二:DZL2t/h锅炉改造前后对比
改造前 改造后 比较
热效率 73% 78% 提高5%
耗煤量(AII) 380kg/h 356kg/h 节煤6.3%
适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广
锅炉外形体积 5.4×2×3.2m 5.9×2×3.2m 长度约增加一米
环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求
该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。
四、煤气化分相燃烧锅炉的特点
传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是:
(1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放;
(2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟;
(3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成;
(4)原煤中的硫大多在燃烧过程中氧化成SO2;
(5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。
煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点:
1、烟尘浓度、烟气黑度低,环保性能好。
在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。
2、节约能源、热效率高。
煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。
3、氮氧化物的排放低
在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在0.7-1.0之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。
4、有一定的脱硫作用
煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。
5、操作和控制简单易行
煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。
6、燃烧稳定,煤种适应性强
煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。
五、结束语
实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。
江苏盐城丰邦节能环保技术有限公司
高效沸腾炉可广泛用于工业原料或产品的烘干、焙烧,如:矿渣、粘土、污泥、电石渣、复合肥、工业石膏、雀穗野石膏板、铁精粉、硫精矿、红土矿、菱铁矿、锌浸出渣、煤粉和煤泥等。沸腾炉的突出优点是,对煤种适应性广,可燃烧烟煤、无烟煤、褐煤和煤矸石。它的另一个好处在于使燃料燃烧充分,从而提高燃料的利用率。永先机械是沸腾炉、链排炉、煤气发生炉、单段式煤气发生炉等煤气炉设备的专业生产老厂,今天永先沸腾炉专家来和大家谈谈沸腾炉的燃烧方式及工艺流程!
燃烧沸腾炉的燃烧方式不同于链排炉和手烧炉,它是通过高压风机鼓入高压空气使固体燃料煤在流化床中“流态化”,在沸腾的状态下进行燃烧。在此基础上经过对国顷喊内外用户的调研,瞄准国际石膏煅烧新技术,再利用所取得的“负弧面导向”、“飞灰循环燃尽”、“下排式尘气分离”、“组合式族衫节能风帽”等自有技术专利,对原燃煤沸腾炉作了进一步的完善。新一代煤燃烧沸腾炉,出气口温度通过补风在950℃以下到100℃之间任意调节,供热稳定;煤能高效清洁燃烧,燃尽率达99%以上,烟气洁净,林格曼黑度指标全部达一级;炉内可固硫80%以上,低温燃烧NOX生存少;对燃料的适应性强,可稳定燃烧高灰份低挥发份、发热量在3000千卡/kg以上各种煤;灰渣自动溢出,是水泥的良好掺合料,可回收综合利用;起燃灵活,时间短,节省起燃材料;可压火备用,最长压火时间可达36小时,随开随用。综合计算,节能效率高于其它工业炉。
沸腾炉的工作原理是将破碎到一定粒度的煤末,用风吹起,在炉膛的一定高度上成沸腾状燃烧。煤在沸腾炉中的燃烧,既不是在炉排上进行的,也不是像煤粉炉那样悬浮在空间燃烧,而是在沸腾炉料床上进行的。来了解下沸腾炉的工艺结构图:
1鼓风机 2沸腾炉 3园盘 4煤仓 5下料管 6皮带 7窑体 8尾罩 9高温分离器 10引风机 11锁风出料阀 12锁风阀 13皮带 14破碎机 15振动筛 16提升机
17布袋除尘器 18除铁器
说了这么多,大家应该对沸腾炉的认识更深一步了吧,如您对以上有关沸腾炉的燃烧方式及工艺流程或者更多煤气炉的技术知识不是太了解,我们可为您提供全面的技术支持,免费为客户设计生产线工艺流程图,为客户单位提供工艺土建现场设计、筑炉、设备安装、点火调试、供应另配件,实行设计制造售后一条龙服务!
煤气炉工作原理:
煤气发生炉是将煤炭转化为可燃性气体--煤气(其主要成份为C0、H2,CH4等)的生产设备。二段式煤气发生炉主要工作原理是:将符合气化工艺指标的煤炭筛选后,由加煤机加入到煤气炉内,煤炭在煤气炉内经物理、化学反应生成可燃性气体,胡让经上、下出口分别到各冷却、净化、混合设备后再输送到用气点用于加热。
CGS3.2两段煤气发生炉技术参数
序号
名
称
单位
技术参数
备
注
1
炉膛直径
mm
3200
2
炉膛截面积
㎡
8.04
3
最大燃料耗量
Kg/h
2419
4
气化强度
Kg/㎡.h
200-300
5
干煤气化率
Nm3/Kg
3.1-3.4
6
灰渣含碳量
10%
7
炉渣出量裤脊局
10%
8
汽化需要空气量
m3/Kg
2.2-2.5
9
汽化需要蒸气量
Kg/Kg煤
0.3-0.5
10
煤气产量
Nm3/h
7000-8500
11
煤气底发热量
KJ/Nm3
5852-6270
12
煤气出口压力
上段
Kpa
3.5
下段
Kpa
4.5
煤气质野纤量指标
成份
CO
CO2
H2
CH4
O2
N2
比例
28%
4-6%
13-15%
1.8-3%
0.5%
45-50%
三、工艺路线
设备生产冷煤气工艺路线图如下:
煤气站的设备配置
1、煤炭运输系统:皮带输送机→振动筛→储煤斗→提煤机→煤气炉中转储煤仓。
2、两段式煤气炉主体:中转储煤仓、两组下煤阀、缓冲煤仓、干馏段、气化段、液压加煤机、液压出灰机、灰盘、出灰装置等。
3、供风系统、液压系统、电控系统
4、上段煤气处理系统:旋风除尘器(是否需要待定,厂家报价时单列)→电捕焦→间冷器→电捕轻→增压系统→单向阀。
5、下段煤气处理系统:旋风除尘器→酚水蒸发器→风冷器→间冷器→电捕轻→增压系统→单向阀。
6、软水处理设备
7、加压站
8、电控采用西门子PLC自动控制、各信号采集采用压力传感器、热电偶等,各操作盘安装智能仪表以便监控操作。
9、分析化验系统。
郑州中远热能技术有限公司专业制造煤气发生炉:0371-87518752
关于煤气发生炉结构图和煤气发生炉结构图纸的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
扫描二维码推送至手机访问。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表找楼装修网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。